AD-762 279 THULE RIOMETER OBSERVATIONS OF POLAR CAP ABSORPTION EVENTS (1962-1972) Raymond J. Cormier Air Force Cambridge Research Laboratories L. G. Hanscom Field, Massachusetts 30 January 1973 #### **DISTRIBUTED BY:** National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151 AFCRL-TR-73-0060 30 JANUARY 1973 AIR FORCE SURVEY IN GEOPHYSICS, NO. 255 #### AIR FORCE CAMBRIDGE RESEARCH LABORATORIES L. G. HANSCOM FIELD, BEDFORD, MASSACHUSETTS ### Thule Riometer Observations of Polar Cap Absorption Events (1962–1972) RAYMOND J. CORMIER Approved for public release; distribution unlimited. ## AIR FORCE SYSTEMS COMMAND United States Air Force Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE U 5 Department of Commerce Springfield VA 22151 | TIS<br>TOC<br>Warrenesed<br>Ustification | White Section Buff Section | |------------------------------------------|----------------------------| | | AVAILABILITY CODES | | 4 | AIL. End/or SPECIAL | Qualified requestors may obtain additional copies from the Defense Documentation Center. All others should apply to the National Technical Information Service. AFCRL-TR-73-0060 30 JANUARY 1973 AIR FORCE SURVEY IN GEOPHYSICS, NO. 255 IONOSPHERIC PHYSICS LABORATORY PROJECT 5631 #### AIR FORCE CAMBRIDGE RESEARCH LABORATORIES L. G. HANSCOM FIELD, BEDFORD, MASSACHUSETTS # Thule Riometer Observations of Polar Cap Absorption Events (1962-1972) **RAYMOND J. CORMIER** Approved for public release; distribution unlimited. AIR FORCE SYSTEMS COMMAND United States Air Force Unclassified Security Classification | DOCUMENT CONTROL DATA - RAD | | | | | | | | | | |------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------|------------------|---------------------------|--|--|--|--|--| | (Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified) | | | | | | | | | | | 1. ORIGINATING ACTIVITY (Corporate author) Air Force Cambridge Research Laboratories (LII) | | | | Unclassified | | | | | | | L.G. Hanscom Field | ZA GROUP | | | | | | | | | | Bedford, Massachuset | ts 01730 | | | | | | | | | | THULE RIOMETER OF | SERVATIONS ( | OF POLAR CA | P ABS | ORPTION | | | | | | | EVENTS (1962-1972) | | | | | | | | | | | 4. DESCRIPTIVE HOTES (Type of report | and inclusive dates) | | | | | | | | | | Scientific. Interim. | | <del></del> | | | | | | | | | s. AUTHORISI (First name, middle initial, | iasi name) | | | | | | | | | | Raymond J. Cormier | | | | | | | | | | | & REPORT DATE | | 74 TOTAL NO. OF PA | | 74 NO. OF REFS | | | | | | | 30 January 1973 | | 252 | 029 | 5 | | | | | | | 84 CONTRACT OR GRANT NO. | - | 94 ORIGINATOR'S RE | PORT NUM | DER(S) | | | | | | | & PROJECT, TASK, WORK UNIT NOS. | 56310901 | AFCRL-TR- | -73-00 | 60 | | | | | | | | | | | | | | | | | | c. DOD ELEMENT | 61102F | Sh. OTHER REPORT I | NO(S) (Amy | other numbers that may be | | | | | | | d DOD SUBELEMENT | 68 13 10 | AFSG No. | 255 | | | | | | | | 10. DISTRIBUTION STATEMENT | | L . | | | | | | | | | | -1 | ion unlimited | | | | | | | | | Approval for Publ. Re | elease; distribut | ion uniffified | | | | | | | | | 11. SUPPLEMENTARY NOTES | <del></del> | 12 SPONSORING MILI | | | | | | | | | MEGIT OFFITTE | | Air Force C<br>Laborator | | dge Research | | | | | | | TECH, OTHER | | L. G. Hanse | | | | | | | | | | | | | usetts 01730 | | | | | | | 13. ABSTRACT | | *************************************** | | | | | | | | | Polar Cap Absorp | tion (PCA) even | ts have been of | bserve | d at Thule, | | | | | | | Greenland, (geographi for the past decade. 7 | | | | | | | | | | | 30 MHz, and utilized a | | | | | | | | | | | This report provides i | nformation for o | operational sys | stems | personnel and | | | | | | | systems designers con<br>of the phenomenon; for | cerning the mea | in behavior of | PCAs | and other aspects | | | | | | | In addition, included a | example, the e | re plots of dB | in dur<br>absorn | ation and magnitude. | | | | | | | In addition, included as an appendix are plots of dB absorption and proton flux (obtained from satellites) versus time for each event. The total number of | | | | | | | | | | | events is 29. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | I | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | DD FORM 1473 | DD , FORM 1473 | | | | | | | | | | | | Unclas | | | | | | | | | | | Securit | y Classifi | cation | | | | | | e amothern is no introduce or and the first shall start the second #### Unclassified Security Classification | 4. | KEY WORDS | | K A | LINK B | | LINK C | | |------------|------------------------------------|------|-----|--------|-----|--------|----| | | | ROLE | WT | HOLE | WT | ROLE | WT | | | | | | | | | | | Polar cap | absorption events<br>avior of PCAs | | | | İ | | | | Mean beha | vior of PCAs | | ļ. | | 1 | | i | | Ionospher | ic absorption | | | | i | | | | Riometers | | | | } | | | l | | Solar prot | on events | | Ī | | l | | i | | ootar pro | o e v e to | | i | 1 | | | | | | | i | ľ | [ | | | İ | | | | | | | | | l | | | | i | | 1 | | | l | | | | | 1 | | 1 | | l | | | | | | | 1 | | [ | | | | 1 | } | | | | | | | | | | [ ] | i | | 1 | | | | | | | | | | | | | | | | ł | | l | | | | | | | 1 | | | | | | | | | | 1 | } | | | | | Į. | | | | ) | | | | | ŀ | | Į. | ] | l | | | | | | | İ | | ĺ | | | | 1 | ŀ | 1 | | | | | | | | l | | | | l | | | | | l I | | | ļ | 1 | | | | l l | | | ŀ | i | | | | | | 11 | | | | | | | | | ŀ | 1 | ŀ | ŀ | l | | | | | П | | į . | | ĺ | | | | | | | l | | l | | | | | 1 | | l | | ŀ | | | | ľ | 1 | | ľ | | ŀ | | | | | | | 1 | | ļ | | | | i | 1 | | l | i i | ŀ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ] | | l | | ŀ | | | | İ | | | | | | | | | | | | | | | | | | | | | | | i | | | | | l | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Unclassified Security Classification #### **Abstract** Polar Cap Absorption (PCA) events have been observed at Thule, Greenland, (geographic N 76° 33′, W 68° 40′) using a ground-based riometer for the past decade. The riometer was operated at a fixed frequency of 30 MHz, and utilized a two-element Yagi antenna directed toward the zenith. This report provides information for operational systems personnel and systems designers concerning the mean behavior of PCAs and other aspects of the phenomenon; for example, the extreme cases in duration and magnitude. In addition, included as an appendix are plots of dB absorption and proton flux (obtained from satellites) versus time for each event. The total number of events is 29. and the control of the state | | Contents | |------------------------------------------------------------------------------------------------------------------|-----------------| | <ol> <li>INTRODUCTION</li> <li>MEAN BEHAVIOR OF PCAs AT THULE</li> </ol> | 1 2 | | ACKNOWLEDGMENTS | 5 | | REFERENCES | 5 | | APPENDIX: Twenty-nine PCA Events Used to Obtain Mean Behavio | or 7 | | <ol> <li>Hours of Absorption Observed on 30-MHz Riometer at Thule,<br/>Greenland, for Selected Levels</li> </ol> | Illustrations 5 | | | Tables | | 1. List of PCA Events | 2 | #### Thule Riometer Observations of Polar Cap Absorption Events (1962-1972) #### 1. INTRODUCTION For the past 10 years a 30-MHz riometer was operated on a continuous basis at Thule, Greenland. During that time, the riometer was used to observe polar cap absorption (PCA) events. These events were also observed by other experiments such as VLF propagation paths, HF propagation paths, and increases in fmin observed on an ionosonder located in Greenland. The purpose of this report is to provide information to systems designers and operational systems personnel concerning the behavior of PCA events in such a way as to place this phenomenon in proper perspective with other ionospheric phenomena and geomagnetic disturbances. Provided for reference is a catalog of PCAs observed at Thule, from January 1962 through August 1972. It is important at this time to state that the events presented do not include all possible PCAs observed by other means during that period, nor certainly all the solar proton events observed on various satellites (Shea and Smart, private communication). (Received for publication 30 January 1973) The criteria used in selecting PCAs was that the observed vertical absorption on the 30-MHz riometer must equal 0.5 dB above the diurnal and seasonal variation. This is important because the diurnal and seasonal variation in absorption observed at Thule can be 0.8 dB (Cormier, 1970), which exceeds the PCA lower limit of 0.5 dB. #### 2. MEAN BEHAVIOR OF PCAs AT THULE During the observation period, a total of 53 PCA events was investigated. Of this total, 11 did not produce events greater than 0.5 dB for two possible reasons: first, the proton flux was of insufficient magnitude to produce an observable effect on the riometer recording; and secondly, the seasonal effect (darkness during the winter months) may have contributed to a reading of minimal absorption, the mechanism of the nighttime recovery phenomenon (Reid, 1966; Leinbach, 1967). Of the remaining, 13 were ambiguous for reasons such as equipment malfunction, antenna problems, or data loss. However, the whole event period was not necessarily lost. It is constructive to add at this time that the large PCA events greater than 10 dB would certainly not be included in the questionable category, because large PCA events are unambiguous on riometer recordings. The 29 remaining events (see Table 1) illustrated in the Appendix are unambiguous events; they are used to obtain the mean behavior of PCA events. In Table 1, the following information is given; date of onset time; time in UT of the onset, max, and end time; observed magnitude of dB absorption on the riometer; and proton flux observed by satellites. Table 1. List of PCA Events | | | | 7 | Time (UT) | | Riometer | Protons/cm <sup>2</sup> sec ster | | | |---------------|------|-------|------|-----------|--------------------------|----------|----------------------------------|--------------------|--| | Date | Ве | egin | M | lax | Е | nd | Max<br>dB | Max Proton<br>Flux | | | 1962<br>Feb 1 | 2000 | 1 Feb | 1400 | 2 Feb | 2100 | 2 Feb | 2.8 | 2,600E > 1.4 MeV | | | Feb 9 | 2200 | 9 Feb | 1100 | 10 Feb | | | 2.4 | 0.35E> 10 MeV | | | 1964 | | | | | NONE REPORTED | | | | | | 1965 | | | 1 | | NONE GREATER THAN 0.5 dB | | | | | | | | | 1 | | | | | | | there had a fire the state of the tention of Table 1. List of PCA Events (Cont) | | | Time (U | JT) | Riometer | Protons/cm <sup>2</sup> sec ster | |-----------------|---------------------------|---------------------------|---------------------------|--------------|----------------------------------| | Date | Begin | Max | End | Max<br>dB | Max Proton<br>Flux | | 1966 | | | | | | | Mar 24 | 0900 24 Mar | 1100 24 Mar | 1800 24 Mar | 0.6 | 15E≥20 MeV | | Jul 7 | 0100 7 Jul | 1200 7 Jul | 2100 8 Jul | 2.1 | 28E≥ 15 MeV | | Aug 28 | 1900 28 Aug | 0100 20 Aug | 0300 31 Aug | 2.4<br>14.0 | 16E≥20 MeV<br>1,300E≥15 MeV | | Sep 2 | 0800 2 Sep | 1300 3 Sep | 2000 6 Sep | 14.0 | 1, 500r.≥ 15 MeV | | 1967 | | | | | | | Jan 28 | 1500 28 Jan | 18 <b>00</b> 29 Jan | 0300 31 Jan | 2.7 | 0.6E≥15 MeV | | Mar 11 | 19 <b>00</b> 11 Mar | 1900 12 Mar | 2000 12 Mar | 1.0 | | | May 24 | 0400 24 May | 1400 25 May | | | 980E≥10 MeV | | May 28 | 0600 28 May | 0900 28 May | 1700 30 May | 4.1 | 115E≥ 10 MeV | | Jun 6 | 09 <b>00 6</b> Jun | 0200 7 Jun | 2200 8 Jun | 1.8 | 20E≥ 10 MeV | | 1968 | | | | | | | Jun 9 | 1000 9 Jun | 0800 10 Jun | 0100 12 Jun | 6.5 | 354E≥10 MeV | | Oct 31 | 1200 31 Oct | 1900 2 Nov | 0600 3 Nov | 2.5 | 133E≥ 10 MeV | | Nov 18 | 1400 18 Nov | 1600 19 Nov | 1900 20 Nov | 1.7 | 849E≥10 MeV | | 1969 | | | | | | | Jan 24 | 1400 24 Jan | 1700 24 Jan | 0900 25 Jan | 1.2 | 3E≥10 MeV | | Feb 25 | 1200 25 Feb | 1500 25 Feb | 0100 26 Feb | 2.1 | 88E≥10 MeV | | Mar 30 | 1100 30 Mar | 1900 30 Mar | | 1.3 | 26E≥10 MeV | | Apr 11 | 1300 11 Apr | 13 Apr | 0000 21 Apr | > 16 | 1,348E≥10 MeV | | Nov 2 | 1200 2 Nov | 1600 2 Nov | 0200 5 Nov | | 1,317E≥10 MeV | | 1970 | ' | | | | | | Mar 7 | 1200 7 Mar | 1500 28 Mar | 2100 8 Mar | 5, 1 | 9 <b>3</b> E≥ <b>10</b> MeV | | , and | 1500 i mai | 1000 20 Wai | 5100 0 Mai | 0, 1 | 0011 10 MeV | | <u>1971</u> | | | | | | | Jan 25 | 0300 25 Jan | 1600 26 Jan | 2000 27 Jan | 2.3 | 1,170E≥10 MeV | | Apr 6 | 1200 6 Apr | 1800 6 Apr | 0200 8 Apr | 2.2 | 51E≥ 10 MeV | | Apr 21 | 0000 21 Apr | 0800 21 Apr | 1000 21 Apr | 0.9 | 3E≥10 MeV | | Sep 1<br>Dec 17 | 2200 1 Sep<br>0100 17 Dec | 1000 2 Sep<br>0800 17 Dec | 0400 5 Sep<br>1600 17 Dec | 5, 2<br>1, 9 | 245E≥10 MeV | | Dec 11 | 0100 17 Dec | vood in Dec | 1000 It Dec | 1, 9 | | | 1972 | | l | | | | | Jan 20 | 1500 20 Jan | 1100 21 Jan | 0500 22 Jan | 1.8 | | | May 28 | 2300 28 May | 2300 29 May | 0300 1 Jun | 2.2 | 39E≥10 MeV | | Aug 3 | 0000 3 Aug | 4 Aug | | > 16 | | | Aug 7 | 1800 7 Aug | 2300 8 Aug | 0100 11 Aug | 14 | | The mean behavior was obtained to help answer questions asked by many investigators, for example: How many PCAs can one expect a year? How long does a PCA last? How often can severe PCAs be expected to occur? During what percentage of time can one expect to have appreciable HF absorption phenomena? The mean duration of a PCA event is 63.6 hours. The mean magnitude is 4.0 dB. The mean duration of the proton flux is 84.3 hours. The proton flux was cut off when the flux reached 1 proton/cm $^2$ sec ster for energies of $E \ge 10$ MeV. The longest event occurred on 11 April 1969, which lasted 203 hours. The shortest event was 9 hours observed on 24 March 1966. Another parameter of interest to system designers is the amount of time a particular absorption level is exceeded, which leads to the amount of power required to account for the expected absorption. The levels chosen in this report are $\geq 10 \text{ dB}$ , $\geq 5 \text{ dB}$ , $\geq 3 \text{ dB}$ , $\geq 2 \text{ dB}$ , and $\geq 1 \text{ dB}$ . The total number of hours of PCA events observed during the 29 events is 1853 hours or 76.8 days. The percentages of the total time of occurrence for each level are as follows: $$\geq$$ 10 dB - 3.6%, $\geq$ 5 dB - 11.3% $\geq$ 3 dB - 17.9%, $\geq$ 2 dB - 29.0% $\geq$ 1 dB - 57.3% When considering the foregoing percentages, one must note that the hours of absorption are not evenly distributed over the report period. To illustrate this, representative levels are shown in the Figure 1 histogram. The most striking feature of this figure is the lack of any events during the year 1964 and 1965. During 1964, no reference to any appreciable solar proton event was reported; during 1965, no absorption event which exceeded 0.5 dB was detected on the riometer. Large events greater than 10 dB were observed only in three distinct years; namely, 1966, 1969, and 1972. The relationship between the proton flux curve observed on satellites and the riometer absorption as reported by Judy and Adams (1969), namely, $J = K A^2$ where J = proton flux, A = riometer absorption and K is $8 \pm 2$ was investigated so as to verify its reliability. The relationship was shown to be very good for the months of March through September. The months of April and October do not behave systematically; that is, some follow the relationship and some do not. The winter months show no consistent behavior. Of course, the data sample is too small to draw definite conclusions concerning the relationship. Figure 1. Hours of Absorption Observed on 30-MHz Riometer at Thule, Greenland, for Selected Levels #### **Acknowledgments** The author thanks Dr. S. Silverman and his staff for the operation and maintenance of the riometer equipment at the AFCRL Geopole Observatory at Thule AFB, Greenland. Thanks also to Dr. K. Toman of AFCRL for the critical reading and the suggestions for the improvement of this paper. #### References Cormier, R.J. (1970) Riometry as an Aid to Ionospheric Forecasting, Environmental Research Papers, No. 343, AFCRL-70-0689. Juday, R.W., and Adams, G.W. (1969) Riometer Measurements, Solar Proton Intensities and Radiation Dose Rates, Planet. Space Sci., 17:1313. Leinbach, H. (1967) Mid-day Recoveries of Polar Cap Absorption, J. Geophys. Res., 72:5473. Reid, G.C. (1966) Ionospheric Effects of PCA Events, Space Research VII, North Holland Publishing Co., Amsterdam, p 864. Smart, D.F., and Shea, M.A., Private communication. #### **Appendix** Twenty-nine PCA Events Used to Obtain Mean Behavior Included are plots for the 29 PCA events listed in Table 1 and used in the histogram of Figure 1. The graphs show plots of dB absorption versus universal time for the 30-MHz Thule riometer. Some graphs contain plots of the square root of the proton flux of energies ≥10 MeV as observed from various satellites.\* The events prior to 24 May 1967 do not have proton flux data readily available in the ESSA data pamphlets. The August 1972 events do not have proton flux data available as yet in the ESSA data pamphlets of the comprehensive series. Included on the plots is the calculated value of expected absorption (represented by the letter x) using the Judy and Adams relationship of $J = KA^2$ . In these cases, the value for K is 8. The mean behavior as discussed in the foregoing is presented as a guide to operational personnel and, in particular, systems designers. For instance, if one needs real-time information, a system or systems must be designed to operate in the extreme cases, adding to the cost of the system. If the information could be delayed a number of hours until the severe disturbance was terminated, then one could design the system for the mean-behavior magnitude, that is, about 4 dB. <sup>\*</sup>The proton flux data were obtained from the <u>Solar Geophysical Data</u>, IER-FB-Part II, 282, 292, 298, and 300; Comprehensive Reports 301, 303, 309, 313, 328, 336, 338, and 339, U.S. Department of Commerce, Environmental Sciences Services Administration. Plot 1 Feb. 1, 1962 Plot 2 Feb. 9, 1962 Plot 3 Mar. 24, 1966 Plot 4 July 7, 1966 Plot 5 Aug. 28, 1966 and the second s Plot 6 Sept. 2, 1966 Plot 7 Jan. 28, 1967 Plot 8 Mar. 11, 1967 Plot 9 May 24 & May 28, 1967 Plot 10 June 6, 1967 Plot 11 June 9, 1968 Plot 12 Oct. 31, 1968 Plot 13 Nov. 18, 1968 Plot 14 Jan. 24, 1969 Plot 15 Feb. 25, 1969 Plot 16 Mar. 30, 1969 personal of the state of the belief of the state s Plot 17 April 11, 1969 Plot 18 Nov. 2, 1969 Plot 19 Mar. 7, 1970 Plot 20 Jan. 25, 1971 Plot 21 Apr. 6, 1971 Plot 22 April 21, 1971 and the state of the second se Sept. 1, 1971 Plot 23 Plot 24 Dec. 17, 1971 Plot 25 Jan. 20, 1972 Report Control of the Plot 26 May 28, 1972 Plot 27 Aug. 3 & Aug. 7, 1972